
Integrable Kondo impurities in the one-dimensional supersymmetric extended Hubbard model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 5383

(http://iopscience.iop.org/0305-4470/32/28/315)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 5383–5388. Printed in the UK PII: S0305-4470(99)03296-5

Integrable Kondo impurities in the one-dimensional
supersymmetric extended Hubbard model

Huan-Qiang Zhou, Xiang-Yu Ge and Mark D Gould
Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

E-mail: hqz@maths.uq.edu.au andxg@maths.uq.edu.au

Received 8 April 1999

Abstract. An integrable Kondo problem in the one-dimensional supersymmetric extended
Hubbard model is studied by means of the boundary graded quantum inverse scattering method.
The boundaryK-matrices depending on the local moments of the impurities are presented as a
non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity
Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the
Bethe ansatz equations are obtained.

The Kondo problem describing the effect due to the exchange interaction between the magnetic
impurity and the conduction electrons plays a very important role in condensed matter physics
[1]. Wilson [2] developed a very powerful numerical renormalization group approach, and the
model was also solved by the coordinate Bethe ansatz method [3, 4] which gives the specific
heat and magnetization. More recently, a conformal field theory approach was developed by
Affleck and Ludwig [5] based on a previous work by Nozières [6]. In the conventional Kondo
problem, the interaction between the conduction electrons is discarded, due to the fact that the
interacting electron system can be described as a Fermi liquid. Recently, much attention has
been paid to the study of the theory of magnetic impurities in Luttinger liquids (see, e.g., [7, 8]).
Although some powerful methods, such as the bosonization method, boundary conformal field
theory and the density matrix renormalization group method, are available to help us gain an
understanding of the critical behaviour of Kondo impurities coupled to a Fermi or Luttinger
liquid, some simple integrable models which allow exact solutions are still desirable.

Several integrable magnetic or non-magnetic impurity problems describing a few
impurities embedded in some correlated electron systems have so far appeared in the literature.
Among them are several versions of the supersymmetrict–J model with impurities [9–12].
Such an idea to incorporate an impurity into a closed chain may date back to Andrei and
Johannesson [13] (see also [14, 15]). However, the model thus constructed suffers a lack
of backward scattering and results in a very complicated Hamiltonian which is difficult to
justify on physical grounds. Therefore, as observed by Kane and Fisher [16], it seems to be
advantageous to adopt open boundary conditions with the impurities situated at the ends of
the chain when studying Kondo impurities coupled to integrable strongly correlated electron
systems [17–19].

In this paper, an integrable Kondo problem in the one-dimensional (1D) supersymmetric
extended Hubbard model is studied. It should be emphasized that the new non-c-number
boundaryK-matrices arising from our approach are highly non-trivial, in the sense that they
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cannot be factorized into the product of ac-number boundaryK-matrix and the corresponding
local monodromy matrices. The model is solved by means of the algebraic Bethe ansatz
method and the Bethe ansatz equations are derived.

Let cj,σ andc†
j,σ denote electronic creation and annihilation operators for spinσ at site

j , which satisfy the anti-commutation relations{c†
i,σ , cj,τ } = δij δστ , wherei, j = 1, 2, . . . , L

andσ, τ = ↑,↓. We consider the following Hamiltonian which describes two impurities
coupled to the supersymmetric extended Hubbard open chain:

H = −
L−1∑
j=1,σ

(c
†
j,σ cj+1,σ + h.c.)(1− nj,−σ − nj+1,−σ )

−
L−1∑
j=1

(c
†
j,↑c

†
j,↓cj+1,↓cj+1,↑ + h.c.) + 2

L−1∑
j=1

(
Sj · Sj+1− 1

4njnj+1
)

+JaS1 · Sa + Van1 +Uan1↑n1↓ + JbSL · Sb + VbnL +UbnL↑nL↓ (1)

where Jg, Vg and Ug (g = a, b) are the Kondo coupling constants, the impurity
scalar potentials and the boundary Hubbard-like interaction constants, respectively;Sj =
1
2

∑
σ,σ ′ c

†
jσσσσ ′ciσ ′ is the spin operator of the conduction electrons;Sg(g = a, b) are the

local moments with spin-12 located at the left and right ends of the system, respectively;njσ is

the number density operatornjσ = c†
jσ cjσ , nj = nj↑ + nj↓.

The supersymmetry algebra underlying the bulk Hamiltonian of this model isgl(2|2), and
the integrability of the model on a closed chain has been studied extensively by Essleret al
[20]. It is quite interesting to note that although the introduction of the impurities spoils the
supersymmetry, there is still a remainingu(2) ⊗ u(2) symmetry in the Hamiltonian (1). As
a result, one may add some terms like the Hubbard interactionU

∑L
j=1 nj↑nj↓, the chemical

potential termµ
∑L

j=1 nj and the external magnetic fieldh
∑L

j=1(nj↑−nj↓) to the Hamiltonian
(1), without spoiling the integrability. This explains why the model is so named (also called
the EKS model). Below we will establish the quantum integrability of the Hamiltonian (1) for
a special choice of the model parametersJg, Vg andUg

Jg = − 2

cg(cg + 2)
Vg = −

2c2
g + 2cg − 1

2cg(cg + 2)
Ug = −

1− c2
g

cg(cg + 2)
. (2)

This is achieved by showing that it can be derived from the (graded) boundary quantum inverse
scattering method [21, 22].

Let us recall that the Hamiltonian of the 1D supersymmetric extended Hubbard model
with periodic boundary conditions commutes with the transfer matrix, which is the supertrace
of the monodromy matrixT (u) = R0L(u) · · ·R01(u). Here the quantumR-matrix R0j (u)

takes the form

R = u− 2P

u− 2
(3)

whereu is the spectral parameter,P denotes the graded permutation operator and the subscript
0 denotes the four-dimensional (4D) auxiliary superspaceV = C2,2 with the grading [i] = 0 if
i = 1, 2 and 1 ifi = 3, 4. It should be noted that the supertrace is carried out for the auxiliary
superspaceV . The elements of the supermatrixT (u) are the generators of an associative
superalgebraA defined by the relations

R12(u1− u2)
1
T (u1)

2
T (u2) =

2
T (u2)

1
T (u1)R12(u1− u2) (4)
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where
1
X ≡ X ⊗ 1,

2
X ≡ 1⊗ X for any supermatrixX ∈ End(V ). For later use, we list

some useful properties enjoyed by theR-matrix: (a) unitarity,R12(u)R21(−u) = ρ(u) and (b)
crossing-unitarity,Rst212 (−u)Rst221 (u) = ρ̃(u) with ρ(u), ρ̃(u) being some scalar functions.

In order to describe integrable electronic models on open chains, we introduce two
associative superalgebrasT− andT+ defined by theR-matrix R(u1 − u2) and the relations
[21, 22]

R12(u1− u2)
1
T −(u1)R21(u1 + u2)

2
T −(u2) =

2
T −(u2)R12(u1 + u2)

1
T −(u1)R21(u1− u2)

(5)

R
st1ist2
21 (−u1 + u2)

1
T st1+ (u1)R12(−u1− u2)

2
T ist2+ (u2)

= 2
T ist2+ (u2)R21(−u1− u2)

1
T st1+ (u1)R

st1ist2
12 (−u1 + u2) (6)

respectively. Here the supertranspositionstα (α = 1, 2) is only carried out in theαth
factor superspace ofV ⊗ V , whereasistα denotes the inverse operation ofstα. By
modifying Sklyanin’s arguments [23], one may show that the quantitiesτ(u) given by
τ(u) = str(T+(u)T−(u)) constitute a commutative family, i.e. [τ(u1), τ (u2)] = 0.

One can obtain a class of realizations of the superalgebrasT+ andT− by choosingT±(u)
to be the form

T−(u) = T−(u)T̃−(u)T −1
− (−u) T st+ (u) = T st+ (u)T̃ st+ (u)

(
T −1

+ (−u))st (7)

with

T−(u) = R0M(u) · · ·R01(u) T+(u) = R0L(u) · · ·R0,M+1(u) T̃±(u) = K±(u) (8)

whereK±(u), called boundaryK-matrices, are representations ofT± in some representation
superspace. Although many attempts have been made to findc-number boundaryK-matrices,
which may be referred to as the fundamental representation, it is no doubt very interesting to
search for non-c-numberK-matrices, arising as representations in some Hilbert spaces, which
may be interpreted as impurity Hilbert spaces.

We now solve (5) and (6) forK+(u) andK−(u). For the quantumR-matrix (3), One may
check that the matrixK−(u) given by

K−(u) =


1 0 0 0
0 1 0 0
0 0 A−(u) B−(u)
0 0 C−(u) D−(u)

 (9)

where

A−(u) = −u
2 + 2u− 4c2

a − 8ca + 4uSza
(u− 2ca)(u− 2ca − 4)

B−(u) = − 4uS−a
(u− 2ca)(u− 2ca − 4)

C−(u) = − 4uS+
a

(u− 2ca)(u− 2ca − 4)

D−(u) = −u
2 + 2u− 4c2

a − 8ca − 4uSza
(u− 2ca)(u− 2ca − 4)

(10)

satisfies (5). HereS± = Sx ± iSy . The matrixK+(u) can be obtained from the isomorphism
of the superalgebrasT− andT+. Indeed, given a solutionT− of (5), thenT+(u) defined by

T st+ (u) = T−(−u) (11)
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is a solution of (6). The proof follows from some algebraic computations upon substituting
(11) into (6) and making use of the properties of theR-matrix. Therefore, one may choose the
boundary matrixK+(u) as

K+(u) =


1 0 0 0
0 1 0 0
0 0 A+(u) B+(u)

0 0 C+(u) D+(u)

 (12)

with

A+(u) = − u2 − 2u− 4c2
b + 4 + 4uSzb

(u− 2cb + 2)(u− 2cb − 2)

B+(u) = − 4uS−b
(u− 2cb + 2)(u− 2cb − 2)

C+(u) = − 4uS+
b

(u− 2cb + 2)(u− 2cb − 2)

D+(u) = − u
2 − 2u− 4c2

b + 4− 4uSzb
(u− 2cb + 2)(u− 2cb − 2)

.

(13)

Now it can be shown that Hamiltonian (1) is related to the second derivative of the boundary
transfer matrixτ(u) with respect to the spectral parameteru at u = 0 (up to an unimportant
additive constant)

H = τ ′′(0)
4(V + 2W)

=
L−1∑
j=1

Hj,j+1 + 1
2

1

K ′−(0) +
1

2(V + 2W)

[
str0

( 0
K+(0)GL0

)
+2str0

( 0

K ′+(0)HL0

)
+ str0

( 0
K+(0)(HL0)

2
)]

(14)

where

V = str0K ′+(0) W = str0
( 0
K+(0)H

R
L0

)
Hi,j = Pi,jR′i,j (0) Gi,j = Pi,jR′′i,j (0).

(15)

This implies that the model under study admits an infinite number of conserved currents which
are in involution with each other, thus assuring its integrability.

The Bethe ansatz equations may be derived using the algebraic Bethe ansatz method
[19, 23, 24],(
uj − 1

uj + 1

)2L

=
N∏
i=1
i 6=j

(uj − ui − 2)(uj + ui − 2)

(uj − ui + 2)(uj + ui + 2)

M1∏
α=1

(uj − vα + 1)(uj + vα + 1)

(uj − vα − 1)(uj + vα − 1)

∏
g=a,b

cg + vα/2 + 1

cg − vα/2 + 1

N∏
j=1

(vα − uj + 1)(vα + uj + 1)

(vα − uj − 1)(vα + uj − 1)
=

M2∏
γ=1

(vα − wγ + 1)(vα +wγ + 1)

(vα − wγ − 1)(vα +wγ − 1)∏
g=a,b

cg − wγ /2 + 1
2

cg − wγ /2− 1
2

cg +wγ /2− 1
2

cg +wγ /2 + 1
2

M1∏
α=1

(wγ − vα − 1)

(wγ − vα + 1)

(wγ + vα − 1)

(wγ + vα + 1)

=
M2∏
δ=1
δ 6=γ

(wγ − wδ − 2)

(wγ − wδ + 2)

(wγ +wδ − 2)

(wγ +wδ + 2)

(16)
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with the corresponding energy eigenvalueE of the model

E = −
N∑
j=1

4

u2
j − 1

. (17)

In conclusion, we have studied an integrable Kondo problem describing two impurities
coupled to the 1D supersymmetric extended Hubbard open chain. The quantum integrability of
the system follows from the fact that the Hamiltonian may be embedded into a one-parameter
family of commuting transfer matrices. Moreover, the Bethe ansatz equations are derived by
means of the algebraic Bethe ansatz approach. It should be emphasized that the boundary
K-matrices found here are highly non-trivial, since they cannot be factorized into the product
of a c-numberK-matrix and the local momodromy matrices. However, it is still possible to
introduce a singular local monodromy matrixL̃(u) and express the boundaryK-matrixK−(u)
as

K−(u) = L̃(u)L̃−1(−u) (18)

where

L̃(u) =


ε 0 0 0
0 ε 0 0
0 0 u + 2ca + 2 + 2Sz 2S−

0 0 2S+ u + 2ca + 2− 2Sz

 (19)

which constitutes a realization of the Yang–Baxter algebra (4) whenε tends to 0. The
implication of such a singular factorization deserves further investigation. Indeed, this implies
that integrable Kondo impurities discussed here appear to be, in some sense, related to a
singular realization of the Yang–Baxter algebra, which in turn reflects a hidden six-vertex
XXX symmetry in the original quantumR-matrix. A similar situation also occurs in the
supersymmetrict–J model [19]. Also, the extension of the above construction to the case of
arbitrary impurity spin is straightforward. It will be interesting to carry out the calculation
of thermodynamic, equilibrium properties of the model under consideration. In particular,
it is desirable to study the finite-size spectrum, which, together with the predictions of the
boundary conformal field theory, will allow us to draw various critical properties. The details
are deferred to a future publication.

Note added in proof. After completion of this paper, we noticed a preprint from H Frahm and N A Slavnov [25],

where the method of [19] is generalized in the context of projection. We are grateful to H Frahm for bringing this

reference to our attention.
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