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Abstract. An integrable Kondo problem in the one-dimensional supersymmetric extended
Hubbard model is studied by means of the boundary graded quantum inverse scattering method.
The boundaryK -matrices depending on the local moments of the impurities are presented as a
non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity
Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the
Bethe ansatz equations are obtained.

The Kondo problem describing the effect due to the exchange interaction between the magnetic
impurity and the conduction electrons plays a very important role in condensed matter physics
[1]. Wilson [2] developed a very powerful numerical renormalization group approach, and the
model was also solved by the coordinate Bethe ansatz method [3, 4] which gives the specific
heat and magnetization. More recently, a conformal field theory approach was developed by
Affleck and Ludwig [5] based on a previous work by N@as [6]. In the conventional Kondo
problem, the interaction between the conduction electrons is discarded, due to the fact that the
interacting electron system can be described as a Fermi liquid. Recently, much attention has
been paid to the study of the theory of magnetic impurities in Luttinger liquids (see, e.g., [7, 8]).
Although some powerful methods, such as the bosonization method, boundary conformal field
theory and the density matrix renormalization group method, are available to help us gain an
understanding of the critical behaviour of Kondo impurities coupled to a Fermi or Luttinger
liquid, some simple integrable models which allow exact solutions are still desirable.

Several integrable magnetic or non-magnetic impurity problems describing a few
impurities embedded in some correlated electron systems have so far appeared in the literature.
Among them are several versions of the supersymmetiicmodel with impurities [9-12].

Such an idea to incorporate an impurity into a closed chain may date back to Andrei and
Johannesson [13] (see also [14, 15]). However, the model thus constructed suffers a lack
of backward scattering and results in a very complicated Hamiltonian which is difficult to
justify on physical grounds. Therefore, as observed by Kane and Fisher [16], it seems to be
advantageous to adopt open boundary conditions with the impurities situated at the ends of
the chain when studying Kondo impurities coupled to integrable strongly correlated electron
systems [17-19].

In this paper, an integrable Kondo problem in the one-dimensional (1D) supersymmetric
extended Hubbard model is studied. It should be emphasized that the newnoomber
boundaryK -matrices arising from our approach are highly non-trivial, in the sense that they
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cannot be factorized into the product af-aumber boundark -matrix and the corresponding
local monodromy matrices. The model is solved by means of the algebraic Bethe ansatz
method and the Bethe ansatz equations are derived.

Letc; andcj’g denote electronic creation and annihilation operators for st site
J, which satisfy the anti-commutation relatioiaﬁg, Cjr} =6ij6or, Wherei, j =1,2,...,L
ando,r = 1, |. We consider the following Hamiltonian which describes two impurities
coupled to the supersymmetric extended Hubbard open chain:

L-1
H=—"(clcivre *he)A—nj_o — 1)

j=lo0
L-1 L-1
— Z(CI»TC.}ijJ’l'iCﬁLT +h.c)+ ZZ(Sj -8 — ;Jinjnj+1)
j=1 j=1
+JyS1-8q+ Vany + Ugnyynyy + pSp - Sp + Vpnp + Upnpang 1)
where J,,V, and U, (g = a,b) are the Kondo coupling constants, the impurity

scalar potentials and the boundary Hubbard-like interaction constants, respecsiyety;
%ZM, c}aaaa/cia/ is the spin operator of the conduction electroSs(g = a, b) are the
local moments with spir%—located at the left and right ends of the system, respectiuglyis
the number density operatof, = c;fgcja, nj=nj +nj,.

The supersymmetry algebra underlying the bulk Hamiltonian of this mog&(2¢2), and
the integrability of the model on a closed chain has been studied extensively by &ssller
[20]. Itis quite interesting to note that although the introduction of the impurities spoils the
supersymmetry, there is still a remainin®) ® u(2) symmetry in the Hamiltonian (1). As
a result, one may add some terms like the Hubbard intera(‘/ti@f=1 njynj,, the chemical

potential termu Zle n; and the external magnetic fidk[:f.:l(nﬂ —n;,) tothe Hamiltonian

(1), without spoiling the integrability. This explains why the model is so named (also called
the EKS model). Below we will establish the quantum integrability of the Hamiltonian (1) for
a special choice of the model parametérsV, andU,

J 2 v 20§+2cg—1 U 1—c§ 9
g__cg(cg+2) £ 2c,(cy +2) g__cg(cg+2)' 2)

This is achieved by showing that it can be derived from the (graded) boundary quantum inverse

scattering method [21, 22].

Let us recall that the Hamiltonian of the 1D supersymmetric extended Hubbard model
with periodic boundary conditions commutes with the transfer matrix, which is the supertrace
of the monodromy matriX' (v) = Ror(u) --- Roa(u). Here the quantunR-matrix Ro; (1)
takes the form

u—2P
R = > 3
whereu is the spectral parametdt,denotes the graded permutation operator and the subscript
0 denotes the four-dimensional (4D) auxiliary superspaee C%2 with the grading{] = 0 if
i =1,2and 1ifi = 3, 4. It should be noted that the supertrace is carried out for the auxiliary
superspace’. The elements of the supermatfiXu) are the generators of an associative
superalgebrad defined by the relations

Rua(us — u)T(un)T(uz) = T ()T (uy) Rya(us — uz) (@)
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Where)l( =X®1 )2( = 1® X for any supermatrixX € End(V). For later use, we list
some useful properties enjoyed by tRematrix: (a) unitarity,R12(u) R21(—u) = p(u) and (b)
crossing-unitarityRi’zz(—u)Rg’l2 (u) = p(u) with p(u), p(u) being some scalar functions.

In order to describe integrable electronic models on open chains, we introduce two
associative superalgebrds and 7. defined by theR-matrix R(u; — u») and the relations
[21,22]

2 2
Rio(uy — uz)711(u1)R21(u1 tup)7T _(uz) =T _(u2)Rio(uy + uz)711(u1)R21(u1 — uy)
%)

- 1 2.
R;lfmtz (—uq + MZ)Titl (u1)Rio(—uq — uz)T:ﬂz (u2)

— T3 ug) Roa(—uz — u2) T3 ) R (—u + u2) (6)
respectively. Here the supertranspositiop (@ = 1,2) is only carried out in thexth
factor superspace oV ® V, whereasiss, denotes the inverse operation of,. By
modifying Sklyanin’s arguments [23], one may show that the quantities given by
() = str(Z+(u)7_(u)) constitute a commutative family, i.ex (u1), T (u2)] = O.

One can obtain a class of realizations of the superalgérand7_ by choosingZ (1)
to be the form

Tw=T-WLWI (—w) T =T WE (1 (—w)” (7
with
T_(u) = Rom(u) - - - Rox(u) Ti(u) = Ror(u) - - Ro.m+1(u) Ti(u) = Ki(u) (8)

whereK . (1), called boundark -matrices, are representationsZaf in some representation
superspace. Although many attempts have been made tofinthber boundark -matrices,
which may be referred to as the fundamental representation, it is no doubt very interesting to
search for nor-numberk -matrices, arising as representations in some Hilbert spaces, which
may be interpreted as impurity Hilbert spaces.

We now solve (5) and (6) foK (1) andK_(u). For the quantunk-matrix (3), One may
check that the matriX _ () given by

10 0 0
1 0 0
K-w=10 0 aw Bw ©
0 0 C_(w) D_(u
where
u?+2u — 4c¢? — 8¢, + 4uS:
A_(u) =—
(u—2¢c,)(u—2c, — 4)
B (u) = — usS,;
(M - an)(u - an - 4) (10)
4uS;
C-G) = - (U — 2c,)(u — 2c, — 4)
u?+2u — 4c? — 8¢, — 4uS:
D_(u) =—

(u—2c)(u —2¢c, — 4)
satisfies (5). Her&* = §* £+i58*. The matrixK.(x) can be obtained from the isomorphism
of the superalgebra&. and7;. Indeed, given a solutiof_ of (5), thenZ. («) defined by

T3 () = T-(—u) (11)
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is a solution of (6). The proof follows from some algebraic computations upon substituting
(11) into (6) and making use of the properties of thenatrix. Therefore, one may choose the
boundary matrixk. (1) as

10 0 0
0 1 0 0
K =110 0 avw B (12)
0 0 Ci(u) Di(u)
with
u? —2u —A4c2 + 4+ S}
Ac(u) = —
u—2c, +2)(u — 2¢cp, — 2)
Bu(u) = 4usS,;
T = 20 + 2)(u — 2¢, — 2) 13)
o) 4uS,
+) = —
(u—2cp +2)(u — 2¢c, — 2)
Dau) = u? —2u — 405 +4—4uS;

U —2c,+2)(u—2cp —2)

Now it can be shown that Hamiltonian (1) is related to the second derivative of the boundary
transfer matrixc (1) with respect to the spectral parametesit u = 0 (up to an unimportant
additive constant)

by 7"(0) HH iig et O oG
= aveam = 2 Mo 30 g (K- 06o)

+2stro(13'+(0>HLo) v stro(13+<0><HLo)2)] (14)

where
0
V = stroK,(0) W= stro(KJ,(O)Hfo)
H.; = PR, .(0) Gij = PR 0.

i,j i,j

(15)

This implies that the model under study admits an infinite number of conserved currents which
are in involution with each other, thus assuring its integrability.

The Bethe ansatz equations may be derived using the algebraic Bethe ansatz method
[19, 23, 24],

<uj - 1)2L _ lﬁ[ (uj —u; — (uj +u; —2) l”i[ (uj —va + D(u; +v, + 1)

uj+1 Wwj—ui+2(u;+u; +2) Wj—ve —Dj+v,—1)

i=1 a=1
i#j
1—[ cg+va/2+1lﬂ[ (Vo —uj + D(vy +u; +1) :ﬁ (Ve —wy + D(vg +w, +1)
—v,/2+1 (Ve —uj —D(vg +u; — 1) V:l(va—wy—l)(va+wy—1)(6)
1

e=a,b €8 j=1
Co—wy,/2+% cotw, /21 Moy, — 1) (w, +v, — 1)
g ¥ 2 % 14 2 y — Vo y T Va

1 1
gmab Cg —Wy/2— 5 Cgtw, /245 5 (wy —vg +1) (wy +v, +1)

S

_ 1—[ w, —ws — 2) (w, +ws — 2)
(wy —ws +2) (w, +ws +2)
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with the corresponding energy eigenvali®f the model

N4
E:—Z - (7)

‘Su 1

In conclusion, we have studied an integrable Kondo problem describing two impurities
coupled to the 1D supersymmetric extended Hubbard open chain. The quantum integrability of
the system follows from the fact that the Hamiltonian may be embedded into a one-parameter
family of commuting transfer matrices. Moreover, the Bethe ansatz equations are derived by
means of the algebraic Bethe ansatz approach. It should be emphasized that the boundary
K-matrices found here are highly non-trivial, since they cannot be factorized into the product
of ac-numberK-matrix and the local momodromy matrices. However, it is still possible to
introduce a singular local monodromy matfixu) and express the boundakymatrix K _ ()
as

K_(u) = L)L (—u) (18)
where
e 0 0 0
- 0 ¢ 0 0
L =10 0 w+2e,+2+25° 25~ (19)
00 25 u+2,+2—28°

which constitutes a realization of the Yang—Baxter algebra (4) wheéends to 0. The
implication of such a singular factorization deserves further investigation. Indeed, this implies
that integrable Kondo impurities discussed here appear to be, in some sense, related to a
singular realization of the Yang—Baxter algebra, which in turn reflects a hidden six-vertex
XXX symmetry in the original quanturR-matrix. A similar situation also occurs in the
supersymmetric—/ model [19]. Also, the extension of the above construction to the case of
arbitrary impurity spin is straightforward. It will be interesting to carry out the calculation
of thermodynamic, equilibrium properties of the model under consideration. In particular,
it is desirable to study the finite-size spectrum, which, together with the predictions of the
boundary conformal field theory, will allow us to draw various critical properties. The details
are deferred to a future publication.

Note added in proof After completion of this paper, we noticed a preprint from H Frahm BnA Slavnov [25],
where the method of [19] is generalized in the context of projection. We are grateful to H Frahm for bringing this
reference to our attention.
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